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Correspondence

An Improved Inverse Filtering Method for
Parametric Spectral Estimation

Chong-Yung Chi and Diing Wang

Abstract—For a wide-sense stationary process x(k), it is well known
that its power spectrum P,,( f) can be estimated by whitening the data
with the inverse filter, V(z) = 1/H(z), of the assumed minimum-phase
rational model H(z) associated with x (k). However, the initial condi-
tions for computing the output e(k) of the recursive filter V(z) are un-
known and must be preassigned. In this correspondence, we propose
an improved inverse filtering method which simultaneously estimates
the coefficients of V(z) as well as the initial conditions. The resultant
power spectral estimator with the initial conditions being estimated
outperforms that with the initial conditions wrongly set to zero as the
time constant of V(z) is comparable to the number of data. Finally, we
show some simulation results which support that the performance of
the former is superior to the performance of the latter.

I. INTRODUCTION

Spectral estimation of a wide-sense stationary process x (k) can
be found in various science and engineering areas such as speech
processing, image processing, radar, sonar, seismology, biomedi-
cine, radio astronomy, and oceanography. Various parametric
spectral estimators were developed which have less variance (i.e.,
less statistical fluctuations) and less bias (i.e., higher resolution)
than classical Fourier-based spectral estimators as the number of
data is finite and limited. References [2] and [3] offer details of the
advantage of parametric spectral estimators with respect to classi-
cal ones. Autoregressive moving average (ARMA) spectral esti-
mators form the most general class among parametric spectral es-
timators. They are based on the assumption that the data x (k), k =
0,1, -+, N — 1 were generated from a minimum-phase recursive
model as follows:

P q
X = = Zaxtk = i) + uk) + Zobutk =) (1)

where u(k) is a white noise sequence.of zero mean and variance
2. This model has the following rational transfer function H(z):
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The estimated power spectrum, P, ( f), of x (k) is obtained by

Po(f) = &°|H(z = &"7)? ©)
where 62 and ]:I(z) denote the estimates of o2 and H(z), respec-
tively, obtained from data by a selected optimality criterion.
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Assume that (p, g) is known a priori. Let
0, = (a, a ", a) (C)]
and
0, = (by, by, - -+, bq)" &)

It is well known [1] that @, 8,, and ¢ can be estimated by mini-
mizing the following objective function:
N-1
J,o= 2 ek (6)
where e(k) is the output residual of the recursive whitening inverse
filter V(z) = 1/H(z) as follows:

q P
ey = = X betk — i) + x(®) + 2 awk —i).  (7)

The inverse filter V(z) is nothing but a linear prediction error [4]
filter of infinite order. The initial conditions {e(k), r — ¢ < k <
r— 1} and {x(k), r — p < k < r — 1} must be preassigned in
order to compute e(k). However, the former is unknown and the
latter is available only when r = p. One can judiciously select J,
with

n = max {p, q} ®

to be the objective function so that the unknown initial conditions
for computing e(k) are limited to

9 = (e(n — 1), en = 2), -+, e(n — @) €)

Since O is unknown, it is often wrongly set to zero in parametric
spectral estimators involving inverse filtering of data. It is well
known, from linear systems theory, that e(k) for k = n is the su-
perposition of the zero-input response due to 8, and the zero-state
response due to the input {x(k), k = (n — p)}. When B(z) has
some roots close to the unit circle such that the time constant 7 of
V(z) is comparable to N, the zero-input response of e(k) is signifi-
cant compared with the zero-state response of e(k) forn < k < N
— 1. Surely, the estimation accuracy of both @, and 0, heavily
depends on the unknown 6, for this case.

In this correspondence, in view of the case that the time constant
7 of V(z) is comparable to N, we propose a new iterative method,
called an improved inverse filtering method, to simultaneously es-
timate 6,, 0,, and 6, by minimizing the objective function J,. In
Section 11, we present this new method. Some simulation examples
are then provided in Section III to support that its performance is
superior to that associated with 8, = 0. Finally, we draw some
conclusions.

II. AN IMPROVED INVERSE FILTERING METHOD

Let us concatenate e(k) given by (7) fork =n,n + 1, - -+ N
— 1 as the following vector form:
Biey = —B,8y + Aix,_, (10)
where
X =&, x(j+ D, x(N = 1) (11
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g =(en —jletn—j+1), - eN—1-j) @12

By isan (N — n) X (N — n) matrix

Fl 0 0 c-r cee . 0]
bl 1 O ......... O
B =| b, (13)
0 b,
_() b, b, 1 J
B, is an (N — n) X g matrix
Fbl by - - bq—
b, - - b, 0
By=|b,., b, - - - (14)
b, 0
Lo o0 --- 0]
and 4, isan (N — n) X (N — n + p) matrix
!—a,, a4,y " oa 1 0O 0 --- 0
0 aq v aq 1 o0--- 0
A = o o --- . (15)
| 0 0 - .. 0 a a I_J
e = —B['B,0, + B 'Ax,_,. (16)

Notice, from (16), that the first term on the right-hand side is the
zero-input response and the other term is the zero-state response.
The objective function J, (see (6)) can also be expressed as the
following vector form:

J, = éle,. (17)
We, now, present an iterative block component method (BCM) [5]

to minimize J,. This iterative BCM consists of the following five-
step procedure:

S1) find an initial guess for é,,;

$2) update 6, using (21) below;

S$3) update 8, using (18) below;

S4) update 6, using (22) below;

S5) if J, converges, then stop; otherwise, go to S2).

Notice that for the case that ¢ = 0 (and, consequently n = p), the
proposed method reduces to the well-known covariance method [4]
for AR spectral estimation, hence S$3) and 84) are no longer needed.
For the case that p = 0 (and, consequently, n = g), the proposed
method becomes a MA spectral estimator with no need of S2). For
the case that p > O and ¢ > 0, the proposed method is an ARMA
spectral estimator. The initial guess for , can be obtained using
any other appropriate parametric spectral estimation method.
Whenever a block of unknown quantities (associated with $2)-S4))
is updated, J, is guaranteed to decrease with the other unknown
quantities fixed.
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In our iterative BCM, both @, and 0, are updated by closed-form
formulas, whereas 8, must be updated by a numerical search al-
gorithm no matter whether the model is MA or ARMA. Therefore,
an initial guess for 8, is enough to initialize the proposed BCM.
Next, we present how to update ,, 8, and 0,, respectively.

A. Updating 8,

From (18), one can see that e, is linearly related to 8,. Associ-
ated with this linear model, minimizing J, given by (17) is a typical
least squares estimation problem. Thus, we have [6] the least
squares estimate éo as follows:

0o = {BiB{'B'B,} ' {BiB| '} B ' Aix, . (18)
B. Updating 0,
The vector equation (16) can also be expressed as
ey = B'(—B,8, + X8, + x,) 19)
where x, is given by (11) and X is an (N — n) X p matrix
x(n—1) x(n-2) - x(n —p)
x(n) x(n =1 cx(n—-p+ 1
X = x(n + 1) x(n) cx(n—p+2)
X(N—=2) x(N—-3) --- XN—-1-p)
(20)

Again, from (19), we see that e, is also linearly related to 0,. Thus,
we have the least squares estimate 0, as follows:

b, = {X'BI"'BI'X}"'X' BB, (B, - x,). Qv

C. Updating 9,

Since e(k) (see (10)) for k = n is a nonlinear function of 0,, a
popular approach for obtaining 8, is to use a gradient-type iterative
algorithm to update 6,(/), in order to decrease J,. at every iteration.

We update @),,(i + 1) from 6,,(1') using a modified Newton-Raph-
son type algorithm as follows:

By + 1) = 0,) — pH[ g, 2
where 0 < p = 1, g denotes the gradient

_4J,

N-1
_ de(k)
=%, =2 2 eth) —=

23
0= Oy(i) k=n aeb

&

8 = O(i)
and H; denotes an approximate, i.e., pseudo-Hessian matrix [7]

N-1 -
_ de(k) | [ de(k)
=2z {aeb [aeh,

05 = 0441 k=n

’

%
H = =
" 00}

24

0, = 04(i)

which is obtained by dropping the term involving the second de-
rivative of e(k) with respect to 8, in order to reduce computational
load. One can easily show, by taking the partial derivative of (10)
with respect to &;, that

(25)

From (23)-(25), one can easily see that the jth component of g; and
the (j, k)th component of H, are given by

, 9eg
[g];, = 290£

7185 =841y

= —~2¢;B; "¢ ly,~ o) (26)
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and

deg

[Hily = Z[Bbj

= 20 B 'R R
- =2¢Bi B elo-00) @7
85 = 05(:)

' de,
Bb‘
respectively.

Some remarks are worth to be mentioned as follows. First of all,
B, is an invertible lower triangular matrix and thus any matrix mul-
tiplications involving By ' can be efficiently performed by forward
substitutions rather than general matrix multiplications. Second,
the roots of B(z) (or the poles of V(z)) associated with éb(i + 1)
must be checked if they are inside the unit circle because the re-
cursive filtering by V(z) for computing such as ey, g;, and H, is
implicitly performed in the matrix computations involving By, In
other words, if §,(; + 1) obtained using (22) with p = 1 does not
lead to the decrease of J, with a minimum-phase B(z), one then
has to reduce the value of p appropriately.

After §,, 6,. and 0, are obtained, the least squares estimate of
o can be easily seen to be equal to

2 1
52 =
N-—-n

J(0,, 6, 6. (28)

III. SIMULATION EXAMPLES

Two simulation examples are to be presented to support that the
performance of the proposed iterative BCM with 8, to be estimated
is superior to that as 6 is set to zero (i.e., S3) removed) for the
same data. The synthetic data x (k) used were Gaussian and the data
length was N = 100. For each simulation example, 30 realizations
of spectral estimates were obtained. The 30 estimates are plotted
in an overlaid fashion to indicate the variability of the resultant
spectral estimator. The average (shown as a thin dot-dashed curve
for 8 to be estimated and a thick dot-dashed curve for 8y = 0) of
30 estimates is also shown together with the true power spectral
density (shown as a solid curve). The initial guess for 0, was ob-
tained using the Durbin’s algorithm [8] either from x (k) for the case
of p = 0 (MA case) or from the residual series y(k) = x(k) * 4,
for the case of p > 0 (ARMA case) where d, = 1 and a, k=1,
2, ©+ -, p, were obtained using the least squares modified Yule-
Walker equations method [9], [10].

A. Example 1. (MA Case)

The transfer function H,(z) was a MA model with g = 2 as fol-
lows:

Hi(z) = 1 — 0.3673z™" + 0.960472

which has a pair of strong zeros located at z = 0.98¢*2702) The
simulation results are shown in Fig. 1(a) where 0, was estimated
and Fig. 1(b) where 6, = 0. A spectral null can be observed from
these two figures. As we predicted for this case where the time
constant 7, of V(z) = 1/H,(z) is about 49 = N/2, the variance
associated with the results shown in Fig. 1(a) is much smaller than
that shown in Fig. 1(b). From Fig. 1(c) one can observe that the
bias associated with the results shown in Fig. 1(a) is also smaller
than the bias associated with the results shown in Fig. 1(b) with a
maximum of 5-dB bias improvement at the spectral null.

B. Example 2. (ARMA Case)

H,(z) was selected to be an ARMA model with r,q) = (2,2
as follows:

1 — 1.5102z7" + 0.9604772
1 —0.4467;7" + 0.817 2

Hyz) =

1809
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Fig. 1. Simulation results for example 1 (MA case). (a) Overlaid realiza-
tions associated with 8, being estimated; (b) overlaid realizations associ-
ated with 8, = 0. (¢) Average (thin dot-dashed curve) of realizations as-
sociated with (a); average (thick” dot-dashed curve) of realizations
associated with (b); and the true power spectral density (solid curve).
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Fig. 2. Simulation results for example 2 (ARMA case). (a) Overlaid re-
alizations associated with 8, being estimated; (b) overlaid realizations as-
sociated with 8, = 0. (c) Average (thin dot-dashed curve) of realizations
associated with (a); average (thick dot-dashed curve) of realizations as-
sociated with (b); and the true power spectral density (solid curve).
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which has a pair of strong zeros located at z = 0.98¢%2™% 1" 4nd 4
pair of poles located at z = 0.9¢%7™%2") The simulation results are
shown in Fig. 2(a) where éo was estimated and Fig. 2(b) where 6,
= 0. From these two figures, one can observe a spectral null and
a spectral peak. As we predicted for this case where the time con-
stant 7, of V5(z) = 1/H,(2) is about the same as 7, = N/2, the
variance associated with the results shown in Fig. 2(a) is much
smaller than that shown in Fig. 2(b). From Fig. 2(c), one can ob-
serve that the bias associated with the results shown in Fig. 2(a) at
the proximity of the spectral null is also much smaller than the bias
associated with the results shown in Fig. 2(b) with a maximum of
7-dB bias improvement at the spectral null.

The previous two examples support that the proposed method
works well and that when H(z) has strong zeros such that the time
constant of the associated inverse filter is comparable to N, the
initial conditions for computing the output residual of the inverse
filter should be taken into account in estimating the power spectral
density.

Although the previous simulation results indicate that the inverse
filtering method can improve its performance as the initial condi-
tions are taken into account, two general issues of iterative opti-
mization algorithms including convergence to false local minima
and computational load are worth to be discussed in the following.

Durbin’s algorithm always provided a good initial guess for 6,.
Only very few realizations (which, however, were not included in
the previous simulation results) happened for which the objective
function J, converged to a local minimum for both the inverse fil-
tering method and the improved inverse filtering method. The num-
ber of iterations spent by the latter typically ranged between 15 and
20 for one realization and it was larger than that spent by the former
by about 1 to 5. Moreover, for each iteration the computation ex-
pense for the improved inverse filtering method was also larger
than that for the inverse filtering method due to extra moderate
computations for estimating initial conditions.

IV. CoNcLUSIONS

For a wide-sense stationary process x(k), when the associated
rational transfer function model H(z) has strong zeros such that the
time constant of the inverse filter ¥(z) = 1/H(z) is comparable to
number of data N, the initial conditions for computing the output
residual e(k) of V(k) significantly affect the estimation accuracy of
V(z). We have presented a new iterative block component method
which can simultaneously estimate V(z) as well as the initial con-
ditions. The presented simulation results showed that the resultant
spectral estimator with the initial conditions being estimated has
much smaller variance and smaller bias than that with the initial
conditions forced to zero as the time constant of V(z) is comparable
to N. The study reported in this correspondence also indicates that
some performance degradation to any spectral estimators involving
the inverse filtering of data without estimating the initial conditions
is inevitable as the number of data is not much larger than the time
constant of the associated inverse filter. As a final remark, when
x (k) is Gaussian the proposed spectral estimation method is also a
maximum-likelihood method.
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On the Complexity of IQML Algorithms
Michael P. Clark and Louis L. Scharf

Abstract—In this correspondence we study the computational com-
plexity of two methods for solving least squares and maximum likeli-
hood modal analysis problems. In particular, we consider the Steiglitz-
McBride and iterative quadratic maximum likelihood (IQML) algo-
rithms. Recently, McClellan and Lee have shown the iterations of the
two methods to be equivalent. However, they suggest that the Steiglitz—
McBride algorithm may be computationally preferable. We provide in
this correspondence a method for reducing the dimension of the matrix
inversion required at each iteration of IQML. The resulting reduction
in the computation makes the computational complexity of IQML com-
mensurate with that of the Steiglitz-McBride algorithm.

I. INTRODUCTION

Iterative methods for solving the least squares, or maximum like-
lihood, modal analysis problem have been developed by Kumare-
san et al. [1], and Bresler and Macovski [2]. These methods are
collectively known as iterative quadratic maximum likelihood
(IQML). Predating these schemes is the filter design method of
Evans and Fischl [3]. All of these methods employ the same iter-
ation to solve a multidimensional optimization problem. Recently,
McClellan and Lee [4] have shown that all of these methods are
exactly equivalent to the Steiglitz—McBride [5] iteration. However,
they indicate that the Steiglitz-McBride technique might be pre-
ferred because it is computationally less expensive. Kumaresan er
al. [1] proposed a method for reducing the computation of the ex-
pensive matrix inversion which is required at each iteration of
IQML. However, Behrens [6] has shown this method to be unstable
under certain conditions. In fact, using the notation in [1], if a (the
vector of amplitudes) is real and symmetric, and both M (the num-
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ber of modes) and N (the number of samples) are odd, the circulant
matrix constructed by the method is singular. The problem arises
because the inverse of this circulant matrix is required. We present
in the next section a stable method which further simplifies the
computation of IQML, bringing it to a level commensurate with
that of the Steiglitz-McBride algorithm.

II. THE DETERMINISTIC MAXIMUM LIKELIHOOD PROBLEM

In this section we give a brief overview of the IQML method
presented in [1] and [2]. Consider a signal composed of p damped,
sinusoidal modes, a;z/, in additive, Gaussian white noise. An
N-dimensional vector of samples of this signal is

y=Ha+n (1)
where
H=[¥@z) ¥(z) - ¥(-)] 2
V=10 z 2 z77f 3)
a=la a; - a, ) @

and n is a normally distributed random variable with mean zero
and variance ¢°I. Let B(z) be a degree-p polynomial

14
Bz) = 21 bz~ (5)
k=0

The maximum likelihood mode estimates are the roots of the poly-
nomial, B(z), whose coefficients solve the optimization problem:
min b*Y*(BB*)"'Yh (6)

where B* denotes the Hermitian transpose of the matrix B. Here
the Toeplitz matrix

is (N — p) X N-dimensional, and the Toeplitz data matrix

Yoo Yp-1 "7 0N Yo
, ooy

e I ®
YN-1 IN-2 """ Yn—p IN-—p-1d

is (N — p) X (p + 1)-dimensional. The vector of coefficients of
the prediction polynomial B(z),
b=1lby by - bl ©
is (p + 1)-dimensional. The parameter b, is normally restricted to
be unity. This is the nontriviality constraint. The minimization
problem requires the computation of both (BB*)™' and
(Y*(BB*)™'y)™! (neglecting, for now, the fact that the coefficients
of B(z) are usually constrained). The first matrix to be inverted is
of size (N — p) X (N — p) while the second is (p+1)x(p+
1). As the size of the data sample N is generally much larger than
the number of modes to be estimated, p, the majority of the algo-
rithmic complexity lies in the first inversion. However, the matrix
BB*, which is a moving average correlation matrix, has a wealth
of structure. This structure led Kumaresan ez al. [1] to an algorithm
which reduces the computation required to find (BB*)~'. The
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